In univariate linear regression, we had only 1 input parameter x.
Here, we have n input parameters x1,...,xnx_1, ..., x_nx1,...,xn
So, the hypothesis function changes to:
hθ(x)=θ0+θ1x1+θ2x2+......+θnxnh_θ(x)=θ_0+θ_1x_1+θ_2x_2+......+θ_nx_nhθ(x)=θ0+θ1x1+θ2x2+......+θnxn
If θθθ denotes the (n+1) dimensional θθθ vector and X denotes the input vector,
hθ(x)=θTXh_θ(x)=θ_TXhθ(x)=θTX (if x0=1x_0=1x0=1)
Last updated 5 years ago