The image below shows the structure of a simple RNN.
An RNN maps every x<i>x^{\lt i\gt}x<i> to a y<i>y^{\lt i\gt}y<i>, and while doing so, it uses information learned at previous timestamps. However, it does not use information from future timestamps.
a<t>=g(Waaa<t−1>+Wazx<t>+ba)a^{<t>} = g(W_{aa}a^{<t-1>}+W_{az}x^{<t>}+b_{a})a<t>=g(Waaa<t−1>+Wazx<t>+ba)
y^<t>=g(Wyaa<t>+by)\hat{y}^{<t>}=g(W_{ya}a^{<t>}+b_{y})y^<t>=g(Wyaa<t>+by)
Last updated 5 years ago