Deep Learning Specialization - Coursera
main
main
  • Introduction
  • Neural Networks and Deep Learning
    • Introduction to Deep Learning
    • Logistic Regression as a Neural Network (Neural Network Basics)
    • Shallow Neural Network
    • Deep Neural Network
  • Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
    • Practical Aspects of Deep Learning
    • Optimization Algorithms
    • Hyperparameter Tuning, Batch Normalization and Programming Frameworks
  • Structuring Machine Learning Projects
    • Introduction to ML Strategy
    • Setting Up Your Goal
    • Comparing to Human-Level Performance
    • Error Analysis
    • Mismatched Training and Dev/Test Set
    • Learning from Multiple Tasks
    • End-to-End Deep Learning
  • Convolutional Neural Networks
    • Foundations of Convolutional Neural Networks
    • Deep Convolutional Models: Case Studies
      • Classic Networks
      • ResNets
      • Inception
    • Advice for Using CNNs
    • Object Detection
      • Object Localization
      • Landmark Detection
      • Sliding Window Detection
      • The YOLO Algorithm
      • Intersection over Union
      • Non-Max Suppression
      • Anchor Boxes
      • Region Proposals
    • Face Recognition
      • One-Shot Learning
      • Siamese Network
      • Face Recognition as Binary Classification
    • Neural Style Transfer
  • Sequence Models
    • Recurrent Neural Networks
      • RNN Structure
      • Types of RNNs
      • Language Modeling
      • Vanishing Gradient Problem in RNNs
      • Gated Recurrent Units (GRUs)
      • Long Short-Term Memory Network (LSTM)
      • Bidirectional RNNs
    • Natural Language Processing & Word Embeddings
      • Introduction to Word Embeddings
      • Learning Word Embeddings: Word2Vec and GloVe
      • Applications using Word Embeddings
      • De-Biasing Word Embeddings
    • Sequence Models & Attention Mechanisms
      • Sequence to Sequence Architectures
        • Basic Models
        • Beam Search
        • Bleu Score
        • Attention Model
      • Speech Recognition
Powered by GitBook
On this page

Was this helpful?

  1. Convolutional Neural Networks
  2. Object Detection

Region Proposals

PreviousAnchor BoxesNextFace Recognition

Last updated 4 years ago

Was this helpful?

Instead of using a CNN to detect objects at every location in an image, "region proposals" works by first determining areas of interest (i.e. areas which are more likely to contain an object) using segmentation, and then runs the CNN only on those regions, making the process more computationally efficient.

This is also referred to as R-CNN (Regions with CNN).

This implementation of R-CNN was relatively slow because it processed the selected regions one at a time.

"Fast R-CNN" was later proposed and it used a convolutional implementation of sliding windows (as discussed earlier), so as to process all the chosen regions simultaneously.

"Faster R-CNN" used a CNN instead of traditional segmentation techniques to propose regions, making the overall process even faster.