Greedy Algorithms
Last updated
Last updated
Greedy Algorithms follow a problem solving approach wherein they make the locally optimal choice at each stage, with the hope of finding a global optimum.
The focus is, however, on finding the local optimums at each step, regardless of whether a global optimum is ever obtained.
The image below depicts the result of a greedy algorithm that needed to find the largest possible sum, starting from the root. It focused on choosing the maximum value at each step, leading to a solution that wasn't globally optimal.
The image below depicts the globally optimal solution (in green).
Pros of Greedy Algorithms:
simple
easy to implement
reasonable complexity
Cons of Greedy Algorithms:
may not result in a globally optimal solution for any given problem
Where do we use Greedy Algorithms?
Problems that can be solved using Greedy Algorithms satisfy the following properties:
Greedy choice property: from a local optimum we can reach a global optimum, without having to reconsider the decisions already taken
Optimal Substructure: an optimal solution can be constructed efficiently from the optimal solutions of its subproblems
A Greedy Algorithm never reconsiders its choices!
Some common problems solved using the greedy approach include:
Activity Selection problem
Fractional Knapsack Problem
Minimum Number of Coins
Huffman Coding
Job Sequencing problem
Kruskal's Minimum Spanning Tree
Prim's Minimum Spanning Tree
Dijkstra's Shortest Path problem